Ehrenfest molecular dynamics
The Ehrenfest method is a mixed quantum-classical dynamics method in which the total wavefunction is factorized into slow (nuclear) variables, which are treated classically, and fast ones (electrons) which remain quantum-mechanical. In the Ehrenfest method, nuclei move according to classical mechanics on a potential energy surface given by the expectation value of the electronic Hamiltonian.
The time dependence of the electronic wavefunction is expanded into an adiabatic basis and follows the time-dependent Schr\"odinger equation.
\[i\hbar \dot{c}_i(t) = V_i(\mathbf{R}) c_i (t) - i\hbar \sum_j \dot{\mathbf{R}} \cdot \mathbf{d}_{ij}(\mathbf{R})c_j(t)\]
Example
Below the example of the Ehrenfest implementation is presented, using model from [5].
At the start, we assign atoms
and initialise the simulation using the mass and model from NQCModels.jl.
using NQCDynamics
atoms = Atoms(1980)
sim = Simulation{Ehrenfest}(atoms, AnanthModelOne())
Simulation{Ehrenfest{Float64}}:
Atoms{Float64}([:X], [0], [1980.0])
AnanthModelOne{Float64, Float64, Float64, Float64}
a: Float64 0.01
b: Float64 1.6
c: Float64 0.005
d: Float64 1.0
Next, the initial distribution is created:
using Distributions
e = 0.03
k = sqrt(e*2*atoms.masses[1])
r = Normal(-5, 1/sqrt(0.25))
v = k / atoms.masses[1]
distribution = DynamicalDistribution(v, r, size(sim))* PureState(1, Adiabatic())
NQCDistributions.ProductDistribution{NQCDistributions.FixedFill{Float64}, NQCDistributions.UnivariateFill{Distributions.Normal{Float64}}, PureState{Adiabatic}}(DynamicalDistribution{NQCDistributions.FixedFill{Float64}, NQCDistributions.UnivariateFill{Distributions.Normal{Float64}}}(NQCDistributions.FixedFill{Float64}(0.005504818825631803, (1, 1)), NQCDistributions.UnivariateFill{Distributions.Normal{Float64}}(Distributions.Normal{Float64}(μ=-5.0, σ=2.0), (1, 1)), Random.Xoshiro(0x68d4a5da5c0c5f11, 0x7582271926825d8f, 0xbcd16cfff92a4aa4, 0x3b131286c56e9952, 0x16f7bdd5136d1e30)), PureState{Adiabatic}(1, Adiabatic()))
To run an ensemble simulation we additionally choose number of trajectories n_traj
and timespan tspan
and we pass all the established settings to the run_dynamics
function. In this example we output velocities by specifying output=OutputVelocity
and store the final values in the final_velocities
array. Following that, we calculate final momenta.
n_traj = 10
tspan = (0.0, 3000.0)
solution = run_dynamics(sim, tspan, distribution;
trajectories=n_traj, output=OutputVelocity, dt=1.0)
final_velocities = [r[:OutputVelocity][end] for r in solution]
momenta = reduce(vcat, final_velocities*atoms.masses[1])
10×1 Matrix{Float64}:
9.78026033356105
9.7802552999397
9.780254885460927
9.780531919519168
9.78026783801248
9.780254794606927
9.780254794520266
9.780254794448041
9.779768886438767
9.779724632545628
using Plots
histogram(momenta)
xlims!(-20,20)